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SUMMARY 
The traditional methods of wind tunnel test and numerical simulation to study wind-induced static instability response 
of long-span bridges can be costly and time-consuming, especially in the preliminary design stage. Machine learning 
algorithms can be used for fast and reliable assessment of wind-induced static stability to avoid the time and cost 
associated with traditional methods. In this paper, Artificial Neural Network (ANN) model was developed and 
optimized based on the dataset set obtained from wind tunnel study during aerodynamic shape optimization to predict 
the static critical wind speed (Ucr) of centrally-slotted box deck section. A parametric study was also conducted to 
confirm the credibility of the developed ANN model in representing the relationship between the inputs and the output 
parameters. The results show that the proposed model can accurately predict the static critical wind speed Ucr, and can 
be used at the preliminary design stage to reduce the time, cost, and the total number of wind tunnel tests. The 
parametric study showed that the wind angle, a/b, and h/H have the greatest influence on the Ucr value compared with 
the other parameters. 
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1. INTRODUCTION  
Over the last decades, with the application of new materials and the progress of construction 
technology, the span length of modern bridges has considerably increased. Modern long-span 
cable-supported bridges with a main span of 1500 -3500 meters become more susceptible to strong 
wind. Wind-induced static instability and aeroelastic instability are considered critical factors that 
control the construction and design of long-span bridges. 
 Recent studies and wind tunnel experiment results showed that wind-induced static instability of 
long-span bridges might occur, which can cause bridge to overturn abruptly without any back-and-
forth oscillation (Hu and Jiang, 2019); thus, it’s much more dangerous to bridges than flutter and 
should be completely avoided or should happen later than flutter. Therefore, both wind-induced 
static and dynamic instability must be considered while optimizing the aerodynamic shape of such 
long-span bridges. 
 In recent years, the rapid development of Machine Learning (ML) algorithms and its technique 
provides a promising tool that can be used to help solve these problems (Wu and Snaiki, 2022). A 



combination of ML models based on data sets obtained via limited wind tunnel tests or CFD 
simulations can efficiently reduce the workload of aerodynamic shape optimization. 
In this connection, the main purpose of the present work is to develop machine learning model to 
predict the static critical wind speed of centrally-slotted box deck section of a cable-stayed bridge 
(Figure1) using Artificial Neural Network (ANN) model and investigate the effect of each shape 
parameters on static critical wind speed.  

 
Figure 1. The schematic diagram for centrally-slotted box deck and typical shape parameters. 

 
2. DESCRIPTION OF A GENERAL PREDICTION FRAME AND ANN MODEL 
Figure 2 shows the overall framework of the proposed approach for Ucr prediction and the 
parametric study. The data was collected from the wind tunnel study and numerical simulation 
(Zhu and Zhu,2022), where it contains 100 datasets with 10 features adopted as input parameters, 
while the static critical wind speed Ucr was considered as the output parameter. Figure 3(a) 
illustrates the distributions of the dataset and the pairwise relationship of input parameters and 
outputs where the dataset distributions showed that presented input parameters are highly 
correlated with the Ucr (due to the space limitation, only five input parameters and the output 
parameter histograms were shown). In addition, descriptive statistical analysis was also conducted 
to evaluate the data, as shown in table1. 
 

 
Figure 2. The Overall framework of the proposed approach. 

 

The ANN topology is illustrated in Figure 3 (b), where the multilayer feed-forward ANN is 
employed. The network consists of input, output, and two hidden layers. The identity function was 
utilized as an activation function in the neurons of the input and output layers, while the hyperbolic 
tangent sigmoid function was used in the neurons of the hidden layer. The Levenberg-Marquardt 
Backpropagation Learning technique was used as an optimization tool to update weight and bias 
values and train the network, while Root Mean Square Error (RMSE) was used as the cost function 
(weights) to update the explicit parameters. The data set was divided into 10 folds (k=10) using 



the k-fold cross-validation method, with Training (Tr), validation (Val), and testing (Ts) ratios of 
70%, 15%, and 15%, respectively. In order to optimize the number of neurons in the hidden layer 
(hyperparameters), several ANN models for aerodynamic force coefficients are generated with 
different numbers of neurons in the hidden layer (from 1 to 30). Four different error indices, RMSE, 
Man Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of 
Determination (R2), were used to assess each model, then the optimized model was selected. 
 

 
   (a)                                                  (b) 

Figure 3. (a) Distributions of the dataset and the pairwise relationship of input parameters and the output. (b) The 
architecture of the adopted network. 

 
Table 1. Parameters of the centrally-slotted box deck 

Parameters Mean Min Max Standard Deviation 
 ° 0.0° -3° 3° 2.398 
a/b 0.483 0 0.67 0.138 
h/H 0.418 0.27 1 0.198 
 ° 29.806° 16° 33° 4.746 
d/D 29.731 20 40 2.536 
Wind barrier/H 0.134 0 0.569 0.242 
Guide plate length/H 0.250 0 1.067 0.454 
Length of main span(m)  1400. 1300 1600 54.659 
Vertical bending frequency (HZ) 0.152 0.13 0.164 0.006 
Torsion frequency (HZ) 0.385 0.299 0.398 0.029 

 
3. RESULTS AND DISCUSSION  
Figure 4 (a) shows MAPE metric for the built ANN model with the number of neurons equal to 6 
because it gives a higher performance for predicting the static critical wind speed. Figure 4 (b) 
shows the regression for the built ANN model, where the results accuracy reaches approximately 
0.97, 0.97, and 0.96 for the Training, validation, and testing sets, respectively, which proof the 
accuracy of the model. Parametric study was also conducted, where a reference section was 
selected from the dataset, each time only the parameter under investigation will change while the 
other parameters kept unchanged (including the wind barrier and guide plate) (Figure 5). The 
results show that wind angle, a/b, and h/H have the greatest influence on the Ucr.  
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   (a)                                                   (b) 

Figure 4. (a)The quality of the developed models in terms of MAPE (b) Regression plot of the optimum ANN 
model for selected Training, validation, and testing sets for Ucr.   

 

  
   (a)                                                   (b) 

Figure 5. The effect of shape parameters on static critical wind speed (a) (a/b &h/H), 
 α=30, θ =280, d/D=28.8, length=1400m. (b) (d/D& θ0), α=3°, a/b=0.56, h/H=0.40, length=1400m. 

 
4.CONCLUSIONS 
In this paper, ANN model was built based on dataset set obtained from wind tunnel study to predict the 
critical static wind speed Ucr of long-span bridge. The results shown that the built model can accurately 
predict the critical wind speed, and thus, can be used at the design stage for a fast and reliable assessment 
of the wind-induced static instability. The influence of shape parameters on static critical wind speed was 
also investigated and the result showed that wind angle, a/b, and h/H have the highest influence on the Ucr.  
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